Intact ability to learn internal models of arm dynamics in Huntington's disease but not cerebellar degeneration.

نویسندگان

  • Maurice A Smith
  • Reza Shadmehr
چکیده

Two different compensatory mechanisms are engaged when the nervous system senses errors during a reaching movement. First, on-line feedback control mechanisms produce in-flight corrections to reduce errors in the on-going movement. Second, these errors modify the internal model with which the motor plan is transformed into motor commands for the subsequent movements. What are the neural mechanisms of these compensatory systems? In a previous study, we reported that while on-line error correction was disturbed in patients with Huntington's disease (HD), it was largely intact in patients with cerebellar degeneration. Here we altered dynamics of reaching and studied the effect of error in one trial on the motor commands that initiated the subsequent trial. We observed that in patients with cerebellar degeneration, motor commands changed from trial-to-trial by an amount that was comparable to control subjects. However, these changes were random and were uninformed by the error in the preceding trial. In contrast, the change in motor commands of HD patients was strongly related to the error in the preceding trial. This error-dependent change had a sensitivity that was comparable to healthy controls. As a result, HD patients exhibited no significant deficits in adapting to novel arm dynamics, whereas cerebellar subjects were profoundly impaired. These results demonstrate a double dissociation between on-line and trial-to-trial error correction suggesting that these compensatory mechanisms have distinct neural bases that can be differentially affected by disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cerebellar motor learning: are environment dynamics more important than error size?

Cerebellar damage impairs the control of complex dynamics during reaching movements. It also impairs learning of predictable dynamic perturbations through an error-based process. Prior work suggests that there are distinct neural mechanisms involved in error-based learning that depend on the size of error experienced. This is based, in part, on the observation that people with cerebellar degene...

متن کامل

Effects of human cerebellar thalamus disruption on adaptive control of reaching.

Lesion or degeneration of the cerebellum can profoundly impair adaptive control of reaching in humans. Computational models have proposed that internal models that help control movements form in the cerebellum and influence planned motor output through the cerebello-thalamo-cortical pathway. However, lesion studies of the cerebellar thalamus have not consistently found impairment in reaching or...

متن کامل

Predicting and correcting ataxia using a model of cerebellar function.

Cerebellar damage results in uncoordinated, variable and dysmetric movements known as ataxia. Here we show that we can reliably model single-joint reaching trajectories of patients (n = 10), reproduce patient-like deficits in the behaviour of controls (n = 11), and apply patient-specific compensations that improve reaching accuracy (P < 0.02). Our approach was motivated by the theory that the c...

متن کامل

Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements.

We investigated how humans with hereditary cerebellar degeneration [spinocerebellar ataxia (SCA) type 6 and 8, n = 9] and age- and sex-matched healthy controls (n = 9) adapted goal-directed arm movements to an unknown external force field. We tested whether learning could be generalized to untrained regions in the workspace, an aspect central to the idea of an internal model, and if any learnin...

متن کامل

Size of error affects cerebellar contributions to motor learning.

Small errors may affect the process of learning in a fundamentally different way than large errors. For example, adapting reaching movements in response to a small perturbation produces generalization patterns that are different from large perturbations. Are distinct neural mechanisms engaged in response to large versus small errors? Here, we examined the motor learning process in patients with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 93 5  شماره 

صفحات  -

تاریخ انتشار 2005